Rakentavat Muodot
Kulmat
Kulmien ja puolittajien rakentaminen ilman astemittaa
Kolmioiden rakentaminen
Nelikulmioiden rakentaminen
Monitahokkaiden rakentaminen
Kulmat
When the arc marking an angle isn't round, but is shaped like an L, the angle is always...
Kumpi näistä kynistä on terävämpi? Vasempi, eikö? Mutta kuinka paljon terävämpi se on? Yhden sentin terävämpi? Yhden kilogramman?
Yhden neliömetrin? Kuinka edes mitataan terävyyttä? Siinä on kyse kulmista. Kulma määrittää kuinka kauas viiva on kääntynyt verrattuna toiseen viivaan. Valitse piste.
Piirrä suora viiva pisteestä - säde, ollaksemme tarkkoja. Piirrä toinen säde pisteestä, mutta toiseen suuntaan. Kun puhumme kulmista, kutsumme näitä kahta sädettä sivuiksi. Jotta voidaan laskea kierto kahden sivun välillä, tarvitaan mitta-asteikko. Kulmat lasketaan asteissa, näin.
Mittakaava näyttää hieman kellolta, mutta sen sijaan että yksi kierros olisi 60 minuuttia, se on 360 astetta. Asteilla on niiden oma symboli, pieni kohotettu ympyrä. Niin symboli kuin sana "aste" ovat tuttuja kun puhumme lämpötiloista. Mutta täällä se tarkoittaa jotain aivan muuta kuin celsiusasteita. Kulman aste on kierroksen yksi kolmassadaskuudeskymmenesosa.
Koska koko kierros on 360 astetta, puolikas on 180 astetta. Neljäsosakierros on puolet puolikkaasta kierroksesta, 90 astetta. Ja kolme neljäsosaa kierrosta on kolme neljäsosaa 360:tä. Eli 270 astetta. Katso kulmaa, jonka piirsimme aikaisemmin.
Yksi sivu on nollassa, ja toinen juuri 0 ja 90 asteen keskellä. Kulma on 45 astetta. 45 asteen kulma. Kun meillä on asteikko, voimme laskea näiden kahden kynän terävyydet. Aloitamme tylsällä.
Kulma tulisi olla asteikon keskellä ja toisen kulman sivun, eli kynän reunan, nollaa kohden asteikolla. Nyt voimme lukea asteikkoa toiselta kulman sivulta eli toiselta puolelta kynän terää. Kynän terän kulma on 50 astetta. Joten verrataanpa sitä toiseen kynään. Laita se samalla tavalla, terä keskelle, yksi sivu nollaan, ja lue.
Tämä on vain 30 astetta. Pienempi astemäärä tarkoittaa terävämpää kulmaa. Tämä kynä on 20 astetta terävämpi kuin toinen. Jos piirrät tällaisen asteikon pyöreälle läpinäkyvälle muovipalalle saat astelevyn. Astelevy on hyvä olla kun mittaamme kulmia.
Laita keskipiste kulman kärjen kohtaan, ja käännä sitä kunnes yksi kulman sivuista on nollan kohdalla. Voit nyt lukea kuinka monta astetta kulma on katsomalla toisen sivun osoittamaa numeroa. Mutta ole tarkka - tarkista että mittaat oikean kulman. Jos pidät astelevyä väärin, mittaat loput kierroksesta. Merkitäksesi kumpaa kulmaa tarkoitat, sisä- vai ulkokulmaa, piirrä pieni kaari kulmaan, näin.
Koska se on 60 astetta, tarkoitamme tätä kulmaa emmekä kolmeasataa. Joskus riittää, että saadaan kulman likiarvo. On joitakin termejä, jotka kannattaa muistaa sitä varten. Koska tämä kulma on pienempi kuin 90 astetta, se on teräväkärkinen. Jos lisäämme kulmaa tasan 90 asteeseen, se ei ole enää teräväkärkinen, vaan suorakulmainen.
Katso pientä kaarta. Tässä siitä on tullut pieni L. Se tarkoittaa, että se on juurikin suorakulmainen. Tämä on tylppä kulma. Kaikki 90 astetta suuremmat ja 180 astetta pienemmät kulmat ovat tylppiä.
Nyt kulma näyttää pelkältä viivalta. Et voi enää edes nähdä siinä kulmaa. Yksi kulman sivu osoittaa vastakkaiseen suuntaan kuin toinen. Tämä kulma on tasan 180 astetta. Jos teemme siitä vähän isomman, siitä tulee kupera kulma.
Et tapaa kuperia kulmia yhtä usein kuin muita. Mitataksesi kulman sinulla on hyvä olla astelevy. On pyöreitä astelevyjä ja vain osan ympyrästä sisältäviä. Osittaisissa ympyröissä on yleensä sisempi asteikko eri suuntaan kuin ulompi. Kulmat.
Ne mitataan pyöreällä asteikolla asteissa ja yksi aste on kolmassadaskuudeskymmensosa kierrosta.